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ABSTRACT

The Rossby wave instability (RWI) is the fundamental non-axisymmetric radial shear instability

in disks. The RWI can facilitate disk accretion, set the shape of planetary gaps and produce large

vortices. It arises from density and/or temperature features, such as radial gaps, bumps or steps. A

general, sufficient condition to trigger the RWI is lacking, which we address by studying the linear

RWI in a suite of simplified models, including incompressible and compressible shearing sheets and

global, cylindrical disks. We focus on enthalpy amplitude and width as the fundamental properties of

disk features with various shapes. We find analytic results for the RWI boundary and growth rates

across a wide parameter space, in some cases with exact derivations and in others as a description

of numerical results. Features wider than a scale-height generally become unstable about halfway

to Rayleigh instability, i.e. when the squared epicyclic frequency is about half the Keplerian value,

reinforcing our previous finding. RWI growth rates approximately scale as enthalpy amplitude to the

1/3 power, with a weak dependence on width, across much of parameter space. Global disk curvature

affects wide planetary gaps, making the outer gap edge more susceptible to the RWI. Our simplified

models are barotropic and height-integrated, but the main results should carry over to more complex

and realistic scenarios.

Keywords: Astrophysical fluid dynamics(101) — Planet formation(1241) — Protoplanetary disks(1300)

— Hydrodynamics(1963)

1. INTRODUCTION

The Rossby wave instability arises when radial disk

structures, such as bumps or gaps, induce strong pres-

sure gradients and non-Keplerian radial shear (Lovelace

et al. 1999; Li et al. 2000). The RWI can generate large

vortices (Li et al. 2001), for instance at the edges of

planetary gaps (de Val-Borro et al. 2007), which affects

planet migration (Lin & Papaloizou 2010). The RWI

also helps transport matter falling onto accretion disks

(Kuznetsova et al. 2022).

Dust is trapped in both RWI-produced vortices and

the rings that trigger the RWI, in agreement with the

disk structures observed by ALMA (Pinilla & Youdin

2017). The RWI thus constrains observable rings and

vortices (Chang et al. 2023), for instance by regulating

planet-carved gaps (Cimerman & Rafikov 2023). Dust

trapped in such rings and vortices can trigger planet for-

mation (Chiang & Youdin 2010; Dra̧żkowska & Dulle-

mond 2018; Hu et al. 2018; Lyra et al. 2024).
These significant consequences arise from simple con-

siderations. The RWI does not require vertical motions,

baroclinicity or cooling, in contrast to the vertical shear

instability (Nelson et al. 2013; Lin & Youdin 2015) and

other thermal disk instabilities (Lesur et al. 2023; Klahr

et al. 2023). The RWI can be triggered by zonal flows

arising from these hydrodynamic (Manger et al. 2020),

or magnetohydrodynamic (MHD; Johansen et al. 2009),

instabilities. RWI analyses that include 3D motions

(Meheut et al. 2012; Lin 2013), cooling (Huang & Yu

2022), dust feedback (Liu & Bai 2023) and non-ideal

MHD (Cui et al. 2024) are crucial for a complete un-

derstanding, and generally find modest corrections to

idealized cases.

Even for simple cases, a general criterion for the on-

set of the RWI has been elusive. Ono et al. (2016)
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found that the RWI was triggered partway between

the Lovelace and Rayleigh criteria, for a variety of

barotropic disk features. The Lovelace criterion, equiva-

lent to a vortensity extrema in isentropic disks, is neces-

sary but insufficient for the RWI (Lovelace et al. 1999).

The Rayleigh criterion gives axisymmetric instability for

disks with radially decreasing angular momentum some-

where, i.e. negative squared epicyclic frequency, κ2.

Chang et al. (2023) found that disk bumps (barotropic

and baroclinic) triggered RWI when κ2 was locally re-

duced to ∼ 60% of the Keplerian value. We colloquially

refer to this criterion as “halfway to Rayleigh” instabil-

ity.

This work aims to develop a more fundamental un-

derstanding of the RWI boundary and growth rates,

including the “halfway to Rayleigh” criterion. We de-

velop scaling relations using the strength and width of

disk features. We start with simplified shearing sheet

models and test against global disk models. This ap-

proach is motivated by previous shearing sheet mod-

els studying incompressible (Lithwick 2007) and com-

pressible (Vanon & Ogilvie 2016) shear instability, lin-

ear Rossby modes (Umurhan et al. 2016) and non-linear

RWI with cooling (Fung & Ono 2021).

We present our method for studying the RWI with

shearing sheet models in §2. Sections 3 and 4 present our

results for the incompressible and compressible sheets,

respectively. We compare to global disks in §5. A sug-

gesting starting point is the summary of our main results

in §6.

2. SHEARING SHEET RWI MODELS

2.1. The Compressible Shearing Sheet

The shearing sheet models a disk patch centered at

radius Rc, rotating at the local Keplerian frequency, Ω,

with cartesian x, y, z coordinates oriented radially, az-

imuthally and vertically. Vertical averaging gives the

equations of motion (Goldreich & Tremaine 1978; John-

son & Gammie 2005)

DΣ

Dt
= Σ∇ · v (1a)(

D

Dt
+ 2Ωẑ×

)
v = 3Ω2xx̂− 1

Σ
∇P (1b)

D(P/Σγ)/Dt = 0 (1c)

for fluid velocity v, surface density Σ, and (height-

averaged) pressure P , with D/Dt = ∂/∂t + v · ∇. An

ideal gas with adiabatic index γ, adiabatic motions and

no self-gravity or viscosity are assumed.

Combinging Eqs. (1a, 1b),

Dq

Dt
=

∇Σ ×∇P
Σ3

· ẑ , (2)

shows that vortensity, q ≡ (2Ω + ẑ · ∇ × v)/Σ, is con-

served in the absence of baroclinic effects.

We consider an axisymmetric equlibrium with lin-

ear perturbations (using 0, 1 subscripts, repectively) as

Σ = Σ0(x) + Σ1, P = P0(x) + P1, v = v0(x)ŷ + u1x̂ +

v1ŷ. Perturbed quantities have a Fourier dependence

∝ exp[ı(kyy − ωt)], and x-dependent amplitudes.

The equilibrium orbital motion is

v0 = −3

2
Ωx+∆v0 = −3

2
Ωx+

1

2Ω

dΠ0

dx
(3)

where Π0, the equilibrium enthalpy, Π =
∫
dP/Σ

gives the non-Keplerian motion, ∆v0. The equilibrium

vortensity, q0 = κ2/(2ΩΣ0), depends on the squared

epicyclic frequency:

κ2 = 2Ω

(
2Ω +

dv0
dx

)
= Ω2 +

d2Π0

dx2
. (4)

The linear equations of motion for the Fourier ampli-

tudes (given the same symbols as perturbed quantities

for simplicity) are

−ı∆ωΣ1 = − d

dx
(Σ0u1)− ıkyΣ0v1 (5a)

−ı∆ωu1 − 2Ωv1 = − 1

Σ0

dP1

dx
+
Σ1

Σ2
0

dP0

dx
(5b)

−ı∆ωv1 +
κ2

2Ω
u1 = −ıky

P1

Σ0
(5c)

−ı∆ω
(
P1

P0
− γ

Σ1

Σ0

)
= −u1

d ln(P0/Σ
γ
0 )

dx
(5d)

with Doppler shifted frequency, ∆ω ≡ ω − v0(x)ky. We

define a squared sound speed c20 ≡ γP0/Σ0, scale-height

H0 ≡ c0/Ω, (inverse) entropy lengthscale

L−1
S ≡ 1

γ

d ln(P0/Σ
γ
0 )

dx
(6)

and radial buoyancy frequency

N2 ≡ − 1

γΣ0

dP0

dx

d ln(P0/Σ
γ
0 )

dx
= − c2

γLS

d ln(P0)

dx
. (7)

Manipulations yield an ODE for Ψ ≡ P1/Σ0,

Ψ′′ +B(x)Ψ′ = C(x)Ψ, (8)

the shearing sheet version of Eq. (15) in Li et al. (2000)

with primes for x-derivatives, B ≡ d lnF/dx and

F ≡ Σ0Ω
2

κ2 +N2 −∆ω2
, (9a)

C ≡ k2y +
Σ0

FH2
0

+
2ΩkyB

∆ω
+ C2, (9b)

C2 ≡ 1− L′
S

L2
S

+
B

LS
+

4Ωky
∆ωLS

− k2yN
2

∆ω2
. (9c)



3

This work considers isentropic equilibria with C2 =

1/LS = N2 = 0.

The corotation resonance at ∆ω = 0 defines a corota-

tion radius, xc, where ℜ[∆ω(xc)] = 0. At the Lindblad

resonances, where ∆ω2 = κ2 + N2 and 1/F = 0, B is

singular.

The Schrödinger form of Eq. (8) uses Ξ =
√
FΨ to

obtain (Ono et al. 2016):

Ξ′′ = D(x)Ξ (10a)

D =
B′

2
+
B2

4
+ C . (10b)

We solve Eq. (8), since Ξ is singular at Linblad reso-

nances, but D is a useful effective potential.

2.2. The Incompressible Shearing Sheet

For the incompressible shearing sheet (Latter & Pa-

paloizou 2017) we take the limit γ → ∞, so that Eqs.

(1a, 1c) give ∇ · v = 0. We replace ∇P/Σ = ∇Π
in equation (1b). The equilibrium is set by the choice

of Π0(x), from which v0(x) and κ2 follow Eqs. (3, 4).

The perturbed flow obeys a stream function, ψ, as

u1 = −ıkyψ, v1 = ψ′.

The vorticity ζ = (∇ × v) · ẑ, with equilibrium

ζ0 = v′0(x) and perturbation ζ1 = ψ′′−k2yψ is conserved

Dζ/Dt = 0. Thus

−ı∆ωζ1 = −ζ ′0u1 (11)

which gives

ψ′′ =

(
k2y +

v′′0
v0 − ω/ky

)
ψ ≡ Dinc(x)ψ , (12)

the famous Rayleigh equation for non-rotating incom-

pressible shear flows. Coriolis forces set v0, but rotation

is otherwise absent (see Lithwick 2007).

There is a vast literature on this equation (Drazin &

Reid 2004). Relevant results include Rayleigh’s theo-

rem that a vorticity extrema, ζ ′0(x) = 0, is required for

instability. Fjørtoft’s theorem further states that this

inflection point must be a maximum in |ζ0(x)|. Since

disks have ζ0(x) < 0, instability requires a (signed) vor-

ticitiy minimum.

Fjørtoft’s theorem agrees with the interpretation of

Dinc as a potential, since for corotation at a vorticity

minimum ℜ(Dinc) < 0 near corotation for long wave-

lengths, ky → 0. We further see that long wavelengths

are the most unstable. When applied to compressible,

barotropic disks, a vortensity minimum is required for

instability.

Comparing to the compressible case, we might ex-

pect D → Dinc in some incompressible limit. Despite

a shared k2y term, we find that for kyW ≪ 1, the in-

compressible limit has F ∝ 1/κ2 and 2ΩB → −4v′′0 .

Thus the compressbile corotation term is 4 times larger.

This surprising result is possible since D has additional

relevant terms and is a potential for a different fluid

quantity. Despite this difference, our compressible re-

sults have a well-behaved incompressible limit (§4).

2.3. Disk Features

To understand the universal features of RWI, we con-

sider various disk structures, including bumps, gaps and

step. Our compressible and incompressible models share

a common equilibrium enthalpy Π0(x) and thus v0(x).

Our parameterization

Π0(x) = Πb +∆ΠS(x/W ) (13)

has two constants, the reference value Πb (which only

affects compressible models) and amplitude ∆Π > 0.

This work considers the shapes:

S(X) =



G(X) bump

1−G(X) gap
1− tanh(X)

2
drop

1 + tanh(X)

2
jump

(14)

for G(X) = exp(−X2/2) and scaled distance X ≡ x/W .

All shapes vary from 0 to 1 over a radial width ∼ W .

Since Πb = min(Π0(x)) > 0, all Π0(x) > 0.

We describe some properties of our shape functions

next, then apply them to compressible models in §2.3.2.

2.3.1. Shape Functions

Figure 1 plots (in the top row) our enthalpy features.
The scaled amplitude

J ≡ ∆Π/(ΩW )2 (15)

measures a feature’s vorticity amplitude.

The middle row of Figure 1 plots κ2. The location of

vorticity (and κ2) minima is xm = 0 for bumps, ±
√
3W

for gaps—which have a pair of vorticity minima—and

W ln(2 ±
√
3)/2 ≃ ±1.32W , for jumps and drops, re-

spectively. The location of vortensity minima, relevant

for compressible flows, will be slightly shifted.

Inner and outer gap edges are symmetrically equiva-

lent in the shearing sheet. So are the drop and jump

cases. Henceforth the “step” case refers to both.

Rayleigh instability occurs for min(κ2) < 0 and re-

quires vertical motions, absent from our model. The

Rayleigh instability is still highly relevant and occurs



4

0

1

2

Π
0
−
Π

b
[(
Ω
W

)2
]

−1

0

1

2

3

κ
2

[Ω
2
]

−2.5 0.0 2.5

x/W

−1.0

−0.5

0.0

0.5

v 0
′′ /

(v
0
−
c ω

)
[W
−

2
]

−2.5 0.0 2.5

x/W

−2.5 0.0 2.5

x/W

−2.5 0.0 2.5

x/W

Figure 1. Radial profiles of shearing sheet equilibria for (from left to right:) bumps, gaps, drops and jumps of width W and
amplitude J = ∆Π/(ΩW )2 = 0.5, 1, 2 (blue, orange and green curves). Top row: Enthalpy. Middle row Epicyclic frequency
squared, κ2. Minima (dots) and maxima (pluses) of vorticity (and equivalently κ2) are marked, in all rows. Bottom row: The
effective potential Dinc for marginally stable RWI (offset by k2

y, see text).

for J > Jκ ≳ 1. Specifically, from Equations (4, 13)

κ2

Ω2
= 1 + J d2S

dX2
. (16)

and Jκ ≡ 1/max(−d2S/dX2) = 1 for bumps, 2.241

for gaps, and 2.598 for steps. Thus min(κ2) = (1 −
J /Jκ)Ω

2 in the shearing sheet. For global models, κ2

also depends onW/Rc (§5.2). This dependence vanishes
in the shearing sheet limit, W/Rc ≪ 1.

The bottom row of Figure 1 plots the incompressible

effective potential as Dinc−k2y (Eq. 12). The corotation

radius is at a vorticity minimum, xm, with phase speed

cω = ω/ky = v0(xm). This choice removes the corota-

tion singularity and gives (consistent with Fjørtoft’s the-

orem) a negative potential well for trapped modes. The

compressible potential D behaves similarly, but waves

also propagate exterior to Lindblad resonances, where

D < 0 (see Fig. 2).

2.3.2. Compressible Shearing Sheet Features

The compressible shearing sheet model requires not

just Π ′
0(x) but also Σ0 and P0. We consider polytropic

models with P0/Pb = (Σ0/Σb)
Γ, with reference values

Σb, Pb. The structure index Γ could differ from the

adiabatic index γ (but doesn’t here, see below).

The polytropic enthalpy

Π0 =

∫
dP0

Σ0
=

Γ

Γ− 1

P0

Σ0
(17)

matches Eq. (13) for

Σ0 = Σb

[
1 +

∆Π

Πb
S(x/W )

] 1
Γ−1

, (18)

and Πb = ΓPb/[(Γ− 1)Σb].

This compressible polytropic model requires 3 ad-

ditional parameters, besides kyW and J : γ, Γ and

H ≡ c/Ω with

c2 ≡ γPb/Σb = γ(Γ− 1)Πb/Γ . (19)

We drop b subscripts from reference H and c values for

convenience. We don’t need Σb or Pb independently, as

Eq. (8) only depends on logarithmic derivatives of Σ0

and P0.
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Figure 2. Top left: Along the RWI boundary for kyH = 0.1 in a compressible shearing sheet bump, the numbers 1○- 3○ mark
the modes investigated. Other panels: The effective potential D (orange curves, with negative regions shaded) and pressure
perturbation Ψ (blue curves for magnitude [thick], real and imaginary parts [thin solid and dashed]) of the numbered modes,
with the bump width (green dotted lines) and nominal (Keplerian) location of Lindblad resonances (gray dotted lines) marked.

1○: Distant Lindblad resonances, with a trapped mode in the Rossby zone. 2○: The trapped Rossby mode couples to density
waves exterior to nearby Lindblad resonances. 3○: No Lindblad resonances since κ2 < 0, and a “leaky” potential (negative
everywhere). This Rayleigh unstable region is not our focus.

To reduce parameter space, we fix Γ = γ = 4/3 for an

adiabatic sheet with N2 = 1/LS = 0. A diatomic gas

with γ3D = 7/5 corresponds to our height integrated γ =

(3γ3D−1)/(γ3D+1) = 4/3 (Goldreich et al. 1986; Li et al.

2000). Thus H is the only additional free parameter our

compressible models.

The limits Γ → 1,∞ describe constant temperature

and Σ0 features, respectively (Chang et al. 2023). For

completeness, the Γ → 1 limit of Eq. (18) is

Σ0 = γ
P0

c2
= Σb exp

[
γ∆Π

c2
S
( x
W

)]
. (20)

with Πb(Γ− 1) → c2/γ remaining finite.

2.4. Boundary Conditions and Solution Methods

Solving our second order ODEs requires a pair of

boundary conditions, applied at large distances |x| ≫
W, 1/ky, and (for the compressible case) |x| ≫ H.

For the incompressible case (Eq. 12), Dinc → k2y at

large |x|. Physical solutions decay exponentially, with

boundary conditions,

ψ′ = ±kyψ , (21)

at large ∓|x|.
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For the compressible case, boundary conditions exte-

rior to the Lindblad resonances should match onto out-

going density waves. We seek WKB solutions of the

form Ψ ∼ A(x) exp(ı
∫ x

kx(χ)dχ). Compared to previ-

ous works (Li et al. 2000; Ono et al. 2016; Chang et al.

2023) who used just kx, we find A(x) to lowest order,

which improves some numerical results.

First we confirm that outgoing waves have kx(x) >

0. The large |x|, Keplerian limit gives ∆ω →
3Ωkyx/2, F/Σ0 → −Ω2/∆ω2, B → −3Ωky/∆ω →
−2/x and C ≃ D → −(∆ω/c0)

2 → [3kyx/(2H0)]
2.

To lowest WKB order, Eq. (8) gives kx = ±
√
−C, i.e.

∆ω2 = (kxc0)
2. The group velocity

∂ω

∂kx
=
∂∆ω

∂kx
≈ kxc

2

∆ω
≈ 2kxH0

3kyx
c (22)

confirms that kx > 0 for outgoing waves (as ky > 0 by

convention).

For more accuracy, we adopt the physical optics solu-

tion to Eq. (10a),

Ξ ∼ cΞ√
kx,D

exp

(
ı

∫ x

kx,D(χ)dχ

)
(23)

with kx,D =
√
−D (the desired positive root) and cΞ an

arbitrary (complex) constant.

Taking the derivative gives the boundary condition

Ξ′ =

(
ı
√
−D − 1

4D

dD

dx

)
Ξ . (24)

The desired boundary condition for Ψ = Ξ/
√
F follows

as

Ψ′ =

(
ı
√
−D − B

2
− 1

4D

dD

dx

)
Ψ . (25)

At large |x|, d ln(D)/dx/4 → 1/(2x), so that |Ξ| ∝
1/|x|1/2 and |Ψ| ∝ |x|1/2, in agreement with our nu-

merical solutions.

Our numerical solutions use the shooting method. At

the inner boundary, xi, we pick an arbitrary ψ(xi) or

Ψ(xi) and set the derivative with the boundary con-

dition, Eq. (21) or Eq. (25). We integrate with the

Dormand-Prince method (“DOP853”) implemented in

scipy.integrate.solve ivp. The integrated solution

deviates from the outer boundary condition. Using

Muller’s method, we minimize the residual error and

find the complex eigenvalue ω ≡ ωr + ıs. The shoot-

ing method requires good initial guesses. We use known

solutions to gradually explore parameter space.

For global models, we apply the same method but

solve Eq. (15) in Li et al. (2000) instead of Eq. (8).

We have validated our numerical result several ways,

including adjusting the outer boundary positions, find-

ing the incompressible limit of compressible results and

using different methods for the RWI stability boundary

(below). Similar to Li et al. (2000), we derive an energy

equation from Eq. (5), which after azimuthal averaging

(denoted by brackets) is

∂

∂t

[
Σ0

2

(
⟨|v1|2⟩+

⟨Ψ2⟩
c2

)]
= (26)

−dv0
dx

Σ0⟨u1v1⟩ −
d

dx
⟨P1u1⟩

We verified that growth rates and eigenfunctions found

by our numerical method satisfy this relation, over a

range of parameters J , W/H, and kyH.

2.4.1. Locating the Stability Boundary

We find marginally stable modes using a simplified

method (Ono et al. 2016). With s = 0, we fix the coro-

tation radius, xc, to vorticity (or vortensity) minima

for incompressible (or compressible) models, which sets

ω = kyv0(xc). With this choice, the ODE has real coeffi-

cients, and no corotation singularity, as shown in Figure

1 for the incompressible case.

One physical parameter, usually kyW or W/H, varies

as the shooting parameter (and eigenvalue). With other

parameters held fixed, this method finds marginally sta-

ble solutions. For the incompressible model, this method

uses ψ(x) purely real. For the compressible models,

Ψ(x) has a complex boundary condition (Eqs. 24, 25).

Thus the eigenvalue (W/H) can acquire an imaginary

part, which is unphysical. Usually this imaginary part

is negligibly small (≲ 10−3 of the real part), which val-

idates the method. Fig. 2 shows example solutions

obtained with this method. Growth rates away from

the stability boundary are also mapped, using the usual

method.

For more extreme parameters—near Rayleigh insta-

bility and for kyW ≃ 1 (placing Lindblad resonances

in the Rossby zone)—this method can fail, as it does

(for different reasons) in baroclinic disks (Chang et al.

2023). In these cases, we simply measure where s drops

to small values.

It is numerically difficult to find growth rates with

s/Ω ≲ 10−3. Since both methods agree on the stability

boundary location (when this simplified method works),

the stability boundary is relatively sharp.

3. INCOMPRESSIBLE RESULTS

Figure 3 maps RWI growth rates for various shapes

in the incompressible shearing sheet. For a given shape,

the incompressible RWI is completely described by the
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Figure 3. Incompressible RWI growth rate s for (left to right) bump, gap and step features against scaled enthalpy amplitude
J ≡ ∆Π/(W 2Ω2) and the ratio of feature width to azimuthal wavelength, kyW . The RWI boundary (dotted yellow), J = kyW
reference line (dashed yellow), and Rayleigh unstable regions (gray shaded) are shown.

parameters for amplitude, J = ∆Π/(ΩW )2, and width

(scaled to wavenumber), kyW . We describe the incom-

pressible stability boundary, growth rates, and eigen-

functions below.

3.1. Incompressible stability boundary

The dotted yellow curves in Figure 3 show the stabil-

ity boundary, found as described in section 2.4.1. RWI

occurs for larger J or smaller kyW than this boundary,

and no modes (stable, unstable or damped) exist on the

other side.

The stability boundary is best understood as smoothly

connected J ≪ 1 and J ≫ 1 limits. For J ≪ 1, the

stability boundary follows J ≃ fMSkyW , or

∆Π = fMSΩ
2kyW

3 (27)

with fMS ≃ 1.20, 2.39, 2.65 for the bumps, gaps and

steps, respectively.

For J ≫ 1, the stability boundary is simply kyW =

gMS, with gMS =
√
2, 1.05, 2.0 for the bump, gap and

step cases, respectively. While large J values are

Rayleigh unstable, this limiting behavior explains why

the stability curve steepens for J ≳ 1.

These limiting behaviors can be understood several

ways, described below.

3.1.1. Intuitive Explanations

The J ≫ 1 instability condition, kyW < gMS fol-

lows the idea that counter-propagating Rossby waves

(CRWs) drive shear instability (Heifetz et al. 1999). For

simplicity, we consider bumps and examine the approx-

imate condition for CRWs at x ≃ ±W to maintain sta-

tionary phase, with phase speed cω = ω/ky = 0, as

illustrated in §3.3.
With a ψ(x) ∝ exp(ıkxx) WKB approximation, Eq.

(12) gives cω = v0 + v′′0/(k
2
x + k2y). At x = ±W ,

v0/(ΩW ) ∼ ∓(1 + J ) roughly accounts for Keplerian

and non-Keplerian flow, and v′′0 ∼ ±JΩ/W . Taking

kxW ≃ 1 matches the local wave packet to feature size,

giving

v′′0
k2x + k2y

∼ ± J
1 + (kyW )2

(ΩW ) . (28)

Thus cω = 0 requires J ∼ (1 + J )(1 + (kyW )2).

For J ≫ 1 this rough analysis requires 1 ∼ 1+(kyW )2

or kyW ≲ 1 for phase matching and instability, as de-

sired. For J ≪ 1, this analysis fails.

Instead, for the J ≪ 1 boundary, another WKB anal-

ysis applies. Since kyW ≪ 1, waves have a shallow decay

at large |x|/W , as ψ ∝ exp(−ky|x|). To match onto this

decay, the slope across the Rossby zone must change

sign, but only change magnitude by a small amount,

∆Φ ≡Wψ′|W−W /ψ ∼ −kyW .

Across corotation, the slope change from WKB oscil-

lations, ψ ∝ exp(ı
√−Dincx), is

∆Φ =W

∫ W

−W

ψ′′dx/ψ ∼ DincW
2 ∼ −J , (29)

Where the depth of the potential near corotation Dinc ≃
−J /W 2 (Fig. 1). A trapped mode thus requires J ∼
kyW , in agreement with the stability boundary. The



8

Figure 4. Similar to Figure 3, except incompressible growth rates are scaled by a characteristic rate (Ωk2
y∆Π)1/3. Away from

the stability boundary, these scaled rates vary only moderately.

small change in wave phase
√−DincW ∼

√
J ≪ 1 ex-

plains the failure of standard WKB theory for J ≪ 1,

as noted above.

For a more physical explanation of the J ≪ 1 sta-

bility boundary, we briefly summarize the analysis of

shearing waves by Lithwick (2007). Shearing waves in-

teract with axisymmetric disk features of width W and

vorticity amplitude ∆ζ0 ≃ ∆Π/(ΩW 2).

A leading wave with initial radial wavenumber kx(t =

0) ≃ −1/W and fixed ky > 0 swings through a radial ori-

entation, kx(tsw) = 0, in time tsw = (2kx(0)/(3Ωky) ≃
1/(ΩkyW ), since for J ≪ 1 the flow is nearly Keplerian

(Goldreich & Lynden-Bell 1965). While swinging, the

wave couples to the disk feature and spawns a new lead-

ing wave. The amplitude of successive waves increases if

∆ζ0tsw ≳ 1 or ∆Π ≳ Ω2kyW
3, reproducing the J ≪ 1

instability criterion.

3.1.2. More quantitative explanations

The above arguments can be made more rigorous. For

J ≪ 1, Lithwick (2007) couples the physical argument

(∆ζtsw ≳ 1) to a stability boundary given by the integral

kyΩ =
1

3

∫ ∞

−∞

dζ0/dx

x− xc
dx (30)

with the vorticity minimum at xc. This result repro-

duces Eq. (27), and, for our shapes, precisely gives

fMS = 6/IMS with

IMS =

∫ ∞

−∞

S′′′(X)

X −Xc
dX (31)

where Xc = xc/W . Integrating IMS reproduces our nu-

merical results. For bumps, fMS = 3/
√
2π, and gaps,

fMS = 6/
√
2π. The numerically integrated IMS for steps

is also consistent.

For J ≫ 1, the stability boundary kyW =
√
2 for the

bump case can be derived exactly. The J → ∞ limit

gives a parabolic potential well DincW
2 → (kyW )2+3−

(x/W )2. This potential has quantized bound states of

“energy” E = 3− (kyW )2 = 2n+ 1 for n = 0, 1,... (e.g.

Manasreh 2012, Appendix E). For (kyW )2 > 0 only the

n = 0 bound state exists, which demonstates the lack of

RWI modes with higher radial order. This bound state

has kyW =
√
2, as claimed.

For all shapes, a necessary condition for RWI follows

from the requirement that Dinc < 0. This necessary

condition is only close to the stability boundary for J ≳
1. For J ≫ 1 this necessary condition is kyW <

√
3 for

gaps and bumps and kyW < 2 for steps. These simple

necessary conditions are close to, but less strict than,

the sufficient conditions for instability.

3.2. Incompressible growth rates

Figure 3 shows that RWI growth rates increase with

J and with kyW , except near marginal stability. While

it is easier to trigger RWI for long wavelengths (small

kyW ), growth rates well into the unstable region are

faster for smaller wavelengths (large kyW ). The smooth

variations in growth rates, especially away from the sta-

bility boundary, suggest an analytic scaling.
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Figure 5. A map of perturbed vorticity, ζ1, for the RWI in the incompressible shearing sheet, versus x, y position, with arrows
for the the perturbed velocity v1. Rows from top to bottom have growth rates s/Ω ≈ 10−3, 10−2, and 10−1, respectively.
Columns from left to right consider enthalpy bumps, gaps and steps, respectively. Solid vertical lines mark the feature width,
x = ±W . Dotted vertical lines locate the minima of the equilibrium vorticity, ζ0. The enthalpy amplitude J was chosen to
produce the desired growth, with wavenumber ky = 0.1/W in all cases.
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Figure 4 plots growth rates scaled by the characteristic

rate

sinc ≡ (Ωk2y∆Π)1/3 . (32)

This approximation is reasonably good, aside from the

rapid decay near the stability boundary.

In the kyW ≪ 1 limit, Lithwick (2007) derives the

growth rate s/Ω = (3/2)αkyW , where α follows from

the complex integral constraint on α and β:

kyΩ =
1

3W

∫ ∞

−∞

dζ0/dX

(X − β)2 + α2
(X − β + ıα) dX. (33)

This result reduces to Eq. (30) for marginal stability,

where β → Xc. Analysis is simplest for bumps, where

symmetry about the vorticity minimum gives β = 0, and

the imaginary part of the integral vanishes.

Our parameterization, with SB for the bump shape,

gives:

kyW

J =
1

fUS(α)
≡ 1

6

∫ ∞

−∞

XS′′′
B (X)

X2 + α2
dX, (34)

The function fUS(α) for unstable modes, gives fUS(0) =

fMS at marginal stability. Eq. (34) only gives simple

expressions in limiting cases.

For α≪ 1, πα/2 → 1/fMS − kyW/J gives the rise in

growth rates near the stability boundary as

s

Ω
≈ 3

π
kyW

(
1

fMS
− kyW

J

)
(35)

The α→ ∞ limit gives fUS → α4/
√
2π and

s

Ω
→ 3

2
(2π)1/8

(
∆Πk3yW

Ω2

)1/4

(36)

Unfortunately this limit does not directly apply. We are

mainly interested in kyW/J ≳ 0.01, corresponding to

α ≲ 3.4, i.e. at most order unity.

Our approximate Eq. (32) corresponds to fUS ∼ α3, a

good approximation for order unity α.

3.3. Incompressible Eigenfunctions

To visualize RWI modes, Figure 5 maps perturbed

vorticity ζ1 and velocity vectors v1 for various growth

rates and feature types. These incompressible eigenfunc-

tions are similar to the standard global, compressible

RWI (Ono et al. 2016). Corotation is near the vorticity

minima marked with the dotted line.

The RWI mechanism is clearest for larger growth rates

(bottom row). The pair of CRWs across corotation (an-

alyzed in §3.1.1) is evident. This wave pair is shifted in

azimuthal phase, but radially symmetric for the bumps,

10−3 10−2 10−1 100

kyW

10−2

10−1

100

∆
Π
/(
W

2
Ω

2
)

kyH = 0.001

kyH = 0.01

kyH = 0.1

kyH = 1

incompressible

min(κ2)/Ω2 = 0.6

min(κ2) = 0

Figure 6. Marginal stability curves for the RWI of bumps in
the compressible shearing sheet, for different values of kyH.
The incompressible, kyH → ∞, limit (dotted yellow curve)
and min(κ2) = 0.6 reference (pink line with x’s) are shown.
Axes and Rayleigh unstable region as in Fig. 3.

and asymmetric for gaps and steps, consistent with their

asymmetric potentials (Fig. 1). The aximuthal phase

shift causes flow though the vorticity minima to primar-

ily enter regions of negative perturbed vorticity. This

explanation of the growth mechanism is well known for

general shear flows (Heifetz et al. 1999) and the RWI

(Ono et al. 2016).

At lower growth rates (middle row), the phase shift

decreases. The feeding of negative vorticity from the

background into perturbations is less direct, entering

narrow fingers near corotation. Even closer to marginal

stability (top rows) the phase shift is nearly gone, and

feeding via narrow glitches near corotation is harder to

see.

For marginal stability, ζ1 is non-zero and smooth

through corototation. However all growing modes have

ζ1 = 0 at vorticity extrema (as shown by Eq. 11).

This fact explains the necessity of small glitches near

marginal stability, and the width of prominent CRWs,

which fit between a vorticity maximum and minimum

(cf. Fig. 1).

4. COMPRESSIBLE SHEARING SHEET RESULTS

We now analyze the compressible shearing sheet

model of sections 2.1, 2.3.2. Compressible effects are

captured by the value of kyH (see below). Our incom-

pressible results roughly correspond to the kyH → ∞
limit.
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For an effective Mach number, we use the Keplerian

shear across a lengthscale of 1/ky to define

Meff ≡ Ω/ky
c

=
1

kyH
. (37)

RWI modes withMeff ≲ 1 behave incompressibly, which

is expected of subsonic flows. In global protoplanetary

disks, the RWI is moderately compressible for m = 1

modes, and more incompressible for higher m (§6, point
3).

4.1. Compressible Stability Boundary

Figure 6 shows the effect of compressibility, measured

by kyH, on the RWI boundary. The bump feature is

chosen, and is representative, with quantitative shape

effects are noted below.

For kyH = 1 the stability boundary overlaps the in-

compressible limit (kyH → ∞). As kyH decreases, com-

pressibility effects increase.

For sufficiently small kyH ≲ 0.01, the stability bound-

ary breaks into three distinct regions, approximately:

∆Π

Ω2W 2
≈


fMSW

(
ky +

1
4H

)
if W ≲ H

0.4jMS if H ≲W ≲ k−1
y

∞ if kyW ≳ gMS.

(38)

The shape-dependent factors fMS, gMS (§3.1) and jMS

(below) are order unity. For incompressible parameters,

kyH ≳ 0.3, this stability boundary reverts to the incom-

pressible case, with no intermediate width region. For

marginal compressibility, kyH ≃ 0.1, these regions are

not as distinct, with overlapping transitions.

For small widths, W < H, the compressible (kyH ≪
1) stability boundary follows ∆Π ≈ fMSΩ

2W 3/(4H),

independent of ky. Compared to the incompressible

kyW ≪ 1 boundary, ∆Π ∝ W 3 is identical, but com-

pressible enthalpy features must be ≃ 1/(4kyH) larger

for instability. This stabilizing effect generally arises

from the fact that some of the energy is used to com-

press the flow (Blumen 1970).

Wide features and/or short wavelength modes,

kyW ≳ gMS ∼ 1, are RWI-stable, like the incompress-

ible case. However, compressible modes are more un-

stable between 0.3 ≲ kyW ≲ gMS (see Fig. 6). This

effect arises because Lindblad resonances, absent from

the incompressible limit, approach the Rossby zone, as

described below. Ultimately, the widest features require

a global treatment (§5).
For intermediate widths, with W ≳ H but W ≲ k−1

y ,

the stability boundary is approximately given by J =

∆Π/(W 2Ω2) = 0.4jMS with jMS ≃ 1, 2.8, 3.0 for bumps,

0.2 0.5 1 2 4 8

W/H

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
in

(κ
2
/Ω

2 0
)

Bump (local)

Bump

Gap (local)

Outer gap

Inner gap

Step (local)

Jump

Drop

Figure 7. For marginal RWI, the minimum value of κ2/Ω2

caused by bumps, gaps and steps (blue, orange and green
curves, respectively) vs. feature width. Solid curves show
compressible shearing sheet models for kyH = 0.03. Global
models of bumps, outer gap edges and jumps (dashed curves)
and of inner gap edges and drops (dot-dashed curves) have
m = 1, h = 0.03 (matching mh = kyH). Global models
break the symmetry between inner and outer gap edges and
between jumps and drops.

gaps and steps, respectively. The value of min(κ2) =

1 − J /Jκ ≃ 0.6, 0.51, 0.54 for bumps, gaps and steps

(respectively) is more similar, emphasizing that κ2, and

being “halfway to Rayleigh” is more fundamental.

Figure 7 plots min(κ2)/Ω2 for marginal stability, mod-

erate compressibility, kyH = 0.03, and different shapes.

(The global models in this figure are discussed in §5.3.3.)
For W/H ≳ 2, the stability boundary is “halfway to

Rayleigh” with min(κ2) ≃ 0.5−0.6Ω2. For stronger

stronger compressibility (smaller kyH), min(κ2) values

would be more strictly constant (Figure 6).

In Figure 7, the kyW ∼ 1 stability boundary is off

scale at W/H ∼ 30. For W/H ≲ 1, the stability bound-

ary approaches min(κ2)/Ω2 = 1 − (fMS/Jκ)(W/H)/4,

following Eq. (38).

While shape effects are minor in the shearing sheet,

bumps most readily trigger RWI, at larger min(κ2) val-

ues (Fig. 7) and smaller enthalpy amplitudes (smaller

fMS and jMS values, see Fig. 3).

We next examine origin of the three limits in Eq. (38).

4.1.1. Small width compressible boundary

In §3.1.1, incompressible instability for kyW ≪ 1 is

given as the Lithwick (2007) wave shearing time crite-
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ria ∆ζ0tsh ≳ 1. The corresponding W ≪ H compress-

ible instability criterion is that the sound crossing time

tsc ≡ W/(ΩH) ≲ ∆ζ0/Ω
2. Rotation appears explicitly

in the compressible (but not the incompressible) insta-

bility condition, consistent with the discussion after Eq.

(12).

We can also adapt the WKB derivation of the

J , kyW ≪ 1 incompressible stability boundary in §3.1.1
to the compressible kyH ≪ 1, W ≲ H case. The main

difference in this case is that, from Eq. (9b), the de-

cay outside the Rossby zone follows Ψ ∝ exp(−|x|/H).

Thus the slope change across corotation (now for Ψ) be-

comes ∆Φ ∼ −W/H. In this limit, the potential depths

are similar (to order unity), so the induced ∆Φ ∼ −J .

Matching these two gives J ∼ W/H, the desired com-

pressible boundary.

4.1.2. Intermediate width stability boundary

The “halfway to Rayleigh” instability criterion is given

above as the scaled enthalpy condition, J ≳ 0.4jMS ∼ 1.

In absolute terms, relative to Πb ∼ c2, this condition

becomes ∆Π/c2 ≳ (W/H)2. Thus widths larger than H

require increasingly strong enthalpy features, a relevant

point for the astrophysical origin of these features.

To explain this stability boundary, a negative poten-

tial at corotationD(xc) < 0 gives a useful necessary con-

dition for instability (similar to §3.1.2). While simple to

state, there are many terms in D to evaluate. These

terms are stabilizing (or destabilizing) if they make a

positive (or negative) contribution to D(xc).

We focus on the bump case with xc = 0 for simplicity,

and take the kyW ≪ 1 and ∆Π ≫ c2 (equivalent to

W ≫ H as noted above) limits. These limits avoid the

transitions to neighboring stability regimes.

The main stabilizing term is Σ0/(FH2
0 ), the usual

source of the corotation barrier in disks. With Σ0/F ∝
κ2 this term is reduced near Rayleigh instability, and

also, via H0, by disk heating. In our limits

Σ0

FH2
0

∣∣∣∣
x=0

→ 3

W 2

(
1

J − 1

)
(39)

The main destabilizing term is the corotation term

Ccor = 2ΩkyB/∆ω, though B′/2 also contributes.

At corotation B ∝ d ln(q0)/dx diverges approaching

Rayleigh instability.

Thus a simple explanation of the “halfway to

Rayleigh” result is that the stabilizing corotation bar-

rier vanishes, and the destabilizing corotation resonance

diverges, for κ2 → 0. Thus instability occurs somewhat

before this point.

Our limits give

Ccor(0) +
B′(0)

2
→ − 3

W 2

(
3

2(1− J )
+

1

3 + J

)
(40)

with the advertised J → 1 divergence.

Combining Eqs. (39, 40), the necessary criterion

D(0) < 0 becomes J > 0.29. This condition is close to,

but naturally below, the sufficient condition for bumps,

J > 0.4.

One insight from this analysis is that equation of

state effects should have a modest effect on this stability

boundary, via H0 and Σ′
0. However κ2 is the dominant

effect. We defer a more detailed study of thermody-

namic, including baroclinic, effects.

4.1.3. Large width stability boundary

The kyW ≳ 1 condition for stability matches the

incompressible case which was physically justified in

§3.1.1. We do generalize that argument to include com-

pressibility, for reasons explored below.

The enhanced instability of compressible models for

0.3 ≲ kyW ≲ 1 is due to the proximity of Lindblad

resonances, as noted above. While limited to a small

region of parameter space, this result does go against

the usual trend of compressibility hindering instability.

We expect nearby Lindblad resonances to enhance

RWI because the outer wave propagation zones ap-

proach the corotation amplifier (Narayan et al. 1987;

Tsang & Lai 2008). A similar effect is the reduction

of the forbidden zone width, i.e. Toomre Q barriers, in

self-gravitating disks (Mark 1976; Goldreich & Tremaine

1978).

We defer a detailed study of this effect, but note the

basic properties of Lindblad resonances in our models.

Their location, where ∆ω2 = κ2, is at |x| = ±2/(3ky)

in limit of pure Keplerian flow in the shearing sheet

(for corotation at x = 0). This location clearly ap-

proaches |x| ≲ W for kyW ≳ 1. Non-Keplerian flow

affects the exact location of Lindblad resonances in the

Rossby zone.

To understand why Lindblad resonances only affect

compressible modes, note that density waves only prop-

agate where D < 0. For Keplerian flow, this propaga-

tion region follows from the first two terms in Eq. (9b)

as |x| > (2/3)
√

1/k2y +H2, i.e. always with |x| > 2H/3

(Artymowicz 1993). This effective Lindblad resonance

location is far from the Rossby zone for incompressible

modes with kyH ≳ 1.

The simplified analyses offered in other regimes is

complicated by the presence of Lindblad singularities

(where F → ∞) in the Rossby zone (see Fig. 2).

Lindblad singularities can be removed from the ODE
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(Goldreich et al. 1986). However, they are replaced by

“sonic” singularities at |x| ≃ 2H/3, which also lie in the

Rossby region in this W > H regime. We thus defer

further analytic exploration of this regime.

4.2. Compressible growth rates

Figure 8 plots the growth rates for three different lev-

els of compressibility, kyH = 0.03, 0.1, 0.3, from stronger

to weaker, which also corresponds to a range of wave-

lengths from long to short. The bump case is shown, but

other shapes are similar. The width is plotted as W/H,

compared to kyW in Figure 6 for a different perspective.

The characteristic value of kyW = 0.3 (where compress-

ible effects transition from stabilizing to destabilizing, as

described above) lies atW/H = 10, 3, 1 (respectively) in

these plots.

For fixed values of W/H ≲ 1 the stability boundary

is similar for the longer wavelength (more compressible)

cases kyH = 0.03, 0.1 but higher for kyH = 0.3 (pushed

by the incompressible limit). However in the unstable

region, larger kyH modes grow faster.

For larger fixed values of W/H ≳ 1 models with

smaller kyH have an extended region of instability, out

to W/H ∼ 1/(kyH), but only have faster growth (than

larger kyH modes) close to the stability boundary.

More quantitatively, we showed that incompressible

growth rates are approximately sinc ∼ (Ωk2y∆Π)1/3.

For kyH ≲ 0.1, the compressible growth rates in Fig-

ure 8 are better characterized by a reduced rate:

scomp ∼ (Ωk3yH∆Π)1/3 , (41)

for regions not too close to the stability boundary. As

with the incompressible case, the growth rate has a weak

dependence on feature width, W , and increases with ky
in the unstable region.

For quick estimates of RWI growth, Eq. (38) can be

used to determine if parameters are unstable, while the

growth rate can be estimated as min(sinc, scomp) for pa-

rameters a factor ≳ 2 from the stability boundary.

5. COMPARISON TO GLOBAL MODELS

To understand the validity and limitations of our

shearing sheet models, we compare to global, cylindrical

disk models. We demonstrate that shearing box mod-

els are valid for narrow features with sufficiently small

W/Rc, and investigate the role of global disk parameters

m = kyRc and h = H/Rc.

We describe our global enthalpy features, and com-

pare to other parameterizations in §5.1. We analyze the

Rayleigh stability boundary in global models in §5.2. We

compare the RWI in shearing sheet and global models

in §5.3, and finally address RWI in dust traps in §5.4.

5.1. Global disk models

To best compare to our shearing sheet models, our

global models use an enthalpy feature

Π0(R) =

(
R

Rc

)q

[Πb +∆ΠS(∆R/W )] . (42)

with ∆R = R − Rc, powerlaw q, and using the same

shape functions S as Eq. (13).

For the same polytropes, P0 ∝ ΣΓ
0 , Eq. (18) general-

izes to

Σ0(R) = Σb

(
R

Rc

)n [
1 +

∆Π

Πb
S(∆R/W )

] 1
Γ−1

(43)

with n = q/(Γ − 1). We again set Γ = γ = 4/3 and set

n = q = 0 for simplicity in this work.

Works not using our enthalpy formulation can still be

compared to our results. Surface density features (Ono

et al. 2016; Chang et al. 2023),

Σ0,Σ(R) = Σb

(
R

Rc

)n [
1 +

∆Σ

Σb
SΣ(∆R,W )

]
. (44)

are equivalent to our enthalpy formulation, with Σ0 ≃
Σ0,Σ , for

∆Σ

Σb
SΣ ≃


1

Γ− 1

∆Π

Πb
S if

∆Π

Πb
≪ 1,(

∆Π

Πb
S

) 1
Γ−1

if
∆Π

Πb
≫ 1.

(45)

For small amplitudes the shapes are the same and the

amplitudes are similar. Even the isothermal Γ = 1 case

follows, from (Γ − 1)Πb → c2/γ (Eq. 19). For larger

amplitudes, neither amplitudes nor shapes are the same,

so comparisons require more care.

Instead of the above analytic comparison, for gen-

eral disk features, the corresponding enthalpy profile

Π0(R) can be computed, and the amplitude and width

measured. For barotropic models, the profile is simply

Π0 =
∫
dP0/Σ0. For non-barotropic disks,

Π0(R) = Π0(Rr) +

∫ R

Rr

dP0/dR
′

Σ0
dR′ , (46)

for arbitrary values of the reference disk location, Rr,

and Π0(Rr). The reference enthalpy is irrelevant, as a

reference sound speed c (which is not arbitrary) can be

used instead. Thus, with some effort, the enthalpy prop-

erties of any disk feature can be measured, and applied

to the results of this work.
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Figure 8. RWI growth rate, s, for bumps in the compressible shearing sheet, mapped versus scaled bump amplitude, ∆Π, and
bump width relative to disk scale-height, W/H. Different values of kyH are shown from left to right. Compressible (dashed
orange) and incompressible (yellow dotted) marginal stability curves are compared.

5.2. Rayleigh Instability in Global Models

The results for our global models are shown in Fig.

9 for bumps and Fig. 10 for other shapes. In global

models, the shearing sheet symmetry of inner vs. outer

gap edges and jumps vs. drops is broken. We show these

additional cases.

We first discuss the location of the Rayleigh stability

boundary. In shearing sheet models, the Rayleigh sta-

bility boundary is at fixed J (Eq. 16, Figs. 3, 6, 8). For

global models, the critical J value changes for larger

widths, W/Rc.

We describe Rayleigh instability as being “enhanced”

(or “reduced”), when the critical J value drops (or in-

creases) for wider features. Of the shapes considered,

most show enhanced Rayleigh instability, to quite dif-

ferent degrees. Only the inner gap edge shows obviously

reduced Rayleigh instability. The difference with the

outer gap edge (which has the strongest enhancement)

is striking. Curiously, the drop shape differs from the

inner gap edge, which also can be considered a drop.

We wish to understand these effects, since the

Rayleigh stability boundary is crucial for our RWI anal-

ysis. We start with the orbital frequency

Ω2
0(R) = Ω2

K(R) +
1

R

dΠ0

dR
(47)

where the Keplerian ΩK = ΩKcR
3/2
c /R3/2. Using Eq.

(42) with q = 0 and κ2 = R−3d(Ω2
0R

4)/dR gives

κ2

Ω2
Kc

=

(
Rc

R

)3

+ J
[
S′′(X) +

3W

R
S′(X)

]
(48)

for X = ∆R/W , which reduces to the local limit, Eq.

(16), for W,∆R≪ Rc.

There are two main global effects in equation (48).

The first “Keplerian” effect is the (Rc/R)
3 term, which

enhances Rayleigh instability if R > Rc at min(κ2). For

example, the outer edge of gaps and jumps have vorticity

(and κ2) minima at R > Rc. Conversely, this effect

reduces Rayleigh stability for inner gap edges and drops.

The second “non-Keplerian” effect is given by the term

3(W/R)S′(X). Sub-Keplerian speeds (S′(X) < 0) con-

tribute to lower vorticity and enhanced Rayleigh stabil-

ity. This term is positive (negative) for jumps (drops)

and outer (inner) gap edges. Thus this second effect

counteracts the first for these shapes (but not bumps,

as discussed last).

Which effect dominates depends on shape details, es-

pecially how far the vorticity (and κ2) minimum is

from Rc. For a quantitative criterion, we Taylor ex-

pand equation (48) about W = 0, and evaluate at

R = Rm = Rc +Xm, the location of the local κ2 mini-

mum. This expansion shows that min(κ2) is lower, and

Rayleigh instability enhanced if

fW ≡ Xm − J S′(Xm) = Xm +
S′(Xm)

S′′(Xm)
> 0 . (49)

The final expression uses J = Jκ = −1/S′′(Xm), the

small W Rayleigh stability boundary. Since fW > 0 for

outer gap edges (the “Keplerian” effect dominates) and

for drops (the “non-Keplerian” effect dominates) the en-

hanced Rayleigh instability of these shapes is explained.
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Figure 9. RWI marginal stability curves for bumps in a
h = 0.1 global disk with azimuthal mode number m =
1, 2, 3 (solid blue, orange, green curves respectively). Dashed
curves show shearing sheet results for comparison. The
greyed out region is Rayleigh unstable. The dotted yellow
curve gives the minimum amplitude of dust-trapping bumps.

Shapes with fW < 0 (inner gap edges and jumps) are

expected to show reduced Rayleigh instability. This ex-

pectation holds for inner gap edges, but jumps are more

complicated. Rayleigh stability is indeed reduced as

W → 0, but this small effect is not visible in Figure 10.

At largerW/Rc, the first order Taylor expansion is insuf-

ficient for jumps. As Xm increases for larger W/Rc, the

“Keplerian” effect dominates, explaining the enhanced

Rayleigh instability seen for jumps. The stronger com-

petition between the two effects explains why the jump

case shows a weaker enhancement, starting at larger W ,

compared to other shapes.

The bump case is special with fW = 0, which is

marginal by our simple criterion. However since bumps

have S′(X) < 0 for X > 0, both global effects combine

constructively for the bump case, unlike the other cases.

Thus bumps have enhanced Rayleigh stability at larger

W , with min(κ2) shifting to X > 0.

From this analysis, we come to a better understanding

of the Rayleigh stability boundary for wide disk features.

For even more extreme parameters than Rayleigh in-

stability, outward pressure gradients can exceed stellar

gravity, giving Ω2
0 < 0 (Eq. 47). The min(Ω2

0) = 0

boundary appears in Figures 9 and Fig. 10. This bound-

ary is shown to emphasize how extreme this region of

parameter space is.

5.3. Global RWI vs. Shearing Sheet

We now compare the results of our shearing sheet

models to the equivalent compressible global models,

described in §5.1. Global models introduce the length-

scale, Rc and thus one additional dimensionless param-

eter. Our shearing sheet parameters J , kyW and kyH

we add the mode number m = kyRc. Removing the lo-

cal wavenumber ky, an equivalent set—J ,m, h,W/Rc—

uses the aspect ratio h = H/Rc.

5.3.1. Effect of Mode Number m

Figure 9 plots the marginal stability curves for m =

1, 2 and 3 RWI modes in a h = 0.1 disk versus W/Rc

for a bump shape (other shapes are addressed next).

The equivalent compressible shearing sheet models have

kyH = mh = 0.1, 0.2, 0.3, and their stability curves are

shown for comparison.

Shearing sheet and global results agree very well for

W/Rc ≲ 0.1, as expected. This agreement is excellent

even for the most global m = 1 modes. For W/Rc ≳ 0.1

global and shearing sheet results differ, moreso for lower

m. At larger widths, global bumps are more susceptible

to the RWI than shearing sheet bumps.

In Fig. 9, the Rayleigh stability boundary deviates

from constant J , as described in §5.2. The m = 1

mode curves to avoid the Rayleigh stability boundary,

for W/Rc ≳ 0.1, another manifestation of the “halfway

to Rayleigh” result.

The m = 2, 3 modes don’t share this behavior, cross-

ing the Rayleigh boundary. Since these modes are only

weakly compressible, with mh = kyH = 0.2, 0.3, the

“halfway to Rayleigh” behavior is not expected, and is

also not seen in the comparison shearing sheet models.

The shearing sheet stability boundary at kyW ≃ 0.7

is at W/Rc ≃ 0.7/m ≃ 0.7, .35, .23 for the modes in Fig.

9. The global models are more unstable, i.e. to larger

widths than this boundary. This destabilizing effect di-

minishes for smaller W/Rc boundaries, as expected.

5.3.2. Effect of Feature Shape

Figure 10 plots marginal stability curves and growth

rates form = 1, h = 0.1 RWI modes for a range of shapes

(but not bumps, shown in Fig. 9). Global marginal

stability is compared to shearing sheet results for kyH =

mh = 0.1. The agreement is again good forW/Rc ≲ 0.1,

i.e. W/H ≲ 1 on this plot.

The inner and outer gap edges show the largest differ-

ences between global and shearing sheet models, start-

ing for W/H ≳ 0.5. The large distance between the gap

center and vorticity minima (≃ 1.7W , see Fig. 1) is a

natural explanation.

For most shapes, global models are more susceptible

to the RWI than shearing sheet models of equivalent
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Figure 10. RWI growth rates ofm = 1 modes in our h = 0.1
global disk for different shapes. Curves for marginal sta-
bility (solid), compressible shearing sheet marginal stability
(dashed), Rayleigh marginal stability (black dot-dashed) and
marginal dust traps (dotted yellow) are shown.

parameters. Inner gap edges are the only exception (of

the shapes considered). Inner gap edges are also the

only shape to show reduced Rayleigh instability at larger

widths (§5.2). The “halfway to Rayleigh” behavior of

the RWI boundary thus also applies to global models as

they deviate from the shearing sheet approximation.

For narrow widths, W/H ≲ 1, the growth rates in

Fig. 10 are consistent with shearing sheet (cf. Fig. 8 for

kyH = 0.1), similar for all shapes, and given approxi-

mately by Eq. (41). For wider features, we do not offer

a global correction to this analytic approximation, as

the effects seem shape dependent. The basic behavior is

that growth rates steadily increase away from the RWI

boundary.

5.3.3. Halfway to Rayleigh, Globally

We refer back to Fig. 7 for the the minimum value of

κ2/Ω2
0 along the RWI boundary for global models with

m = 1, h = 0.03 (a slightly thinner disk than above).

The results are generally consistent with the equivalent

kyH = mh = 0.03 shearing sheet models. Note that

global models compare to the orbital frequency Ω0(R),

not the fixed Ω of the shearing sheet.

For W ≳ 2H, all models have the RWI boundary

occurring “halfway to Rayleigh” with min(κ2/Ω2
0) ∼

0.5−0.6. The inner and outer gap edges again show

the largest global corrections at larger widths. Inner

gap edges are again the most special case and the most

resistant to RWI, especially for wide gaps. Inner gap

edges require the lowest values of min(κ2/Ω2
0) and the

largest enthalpy amplitudes (Fig. 10) to trigger RWI.

For thinner disks, h ≲ 0.01, global corrections are less

significant (for fixed W/H) and min(κ2/Ω2
0) more con-

stant along the RWI boundary. This effect is due to

stronger compressibility, with mh = kyH < 0.01 (Fig.

6). Disks with moderate thickness, 0.03 ≲ h ≲ 0.3, are

more realistic but more complicated, due to intermedi-

ate compressibility and stronger global curvature effects.

5.4. RWI in Dust Traps

Chang et al. (2023) examined which dust trapping

rings became unstable to – and would thus be modi-

fied by – the RWI. The condition for dust trapping is a

maximum in the midplane pressure,

Pmid = ΩK
P0

c0
=
ΩK√
γ

√
P0Σ0 (50)

assuming a vertically isothermal structure.

Figures 9 and 10 show the minimum amplitude needed

for dust trapping. Note that no dust traps exist for inner

gap edges or drops since they reinforce dPmid/dR < 0

instead of reversing it. Dust traps that are stable to RWI
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lie in the parameter space above the yellow dotted dust

trapping curves and below the solid RWI boundaries.

As in Chang et al. (2023), which only considered

bumps, stable (to RWI) dust traps exist above a mini-

mum width and for a range of intermediate amplitudes.

This parameter space is larger for outer gap edges and

jumps, vs. bumps, for reasons that can be explained by

an analysis of Pmid similar to that of κ2 in §5.2.
We defer a more detailed study of dust trap stability

that further extends Chang et al. (2023). We mainly

note that such an analysis is facilitated by the insights

to the RWI boundary established in this work.

6. CONCLUSIONS

We examine the linear Rossby Wave instability (RWI)

with a suite of simplified models, to gain a basic under-

standing of the conditions for instability, and unstable

growth rates. The disk features that trigger the RWI

are best characterized by their enthalpy amplitude, ∆Π

and widthW . When different combinations of tempera-

ture and density produce the same enthalpy profile, the

equilibrium velocity and vorticity profiles are the same

(Eqs. 3, 4). We apply enthalpy features with various

shapes (§2.3) to a suite of models, in the incompressible

shearing sheet (§3), the compressible shearing sheet (§4)
and global models (§5). Our main insights, explored in

detail in the text, follow.

1. The RWI in the incompressible shearing sheet

(ISS) is simply characterized by two dimension-

less parameters: the scaled enthalpy amplitude

J = ∆Π/(ΩW )2 and kyW (wavenumber times

width). The ISS RWI can be understood ana-

lytically, including the stability boundary (Eqs.

27, 30) and growth rate (Eqs. 32, 34). The ISS

RWI has a similar mechanism and eigenfunctions

to the full disk RWI and to generic shear instabil-

ities (Fig. 5).

2. The RWI in the compressible shearing sheet

(CSS) requires the additional parameter, kyH

(wavenumber times scale-height), an inverse Mach

number. Modes with kyH > 1 behave incompress-

ibly. Smaller kyH values show stronger compress-

ibility effects (Fig. 6).

3. The RWI is moderately compressible in typical

protoplanetary disks with aspect ratios 0.03 ≲ h ≲
0.3 (Chiang & Youdin 2010). Specifically, m = 1

azimuthal modes have kyH = mh → h, and are

compressible, while m ≳ 1/h modes are incom-

pressible.

4. The RWI is usually most readily triggered by the

longest wavelength,m = 1 modes (Ono et al. 2016;

Chang et al. 2023; §5.3.1). However, in very thin

disks, modes with different m but mh = kyH ≲
0.01 will have nearly the same RWI boundary, due

to strong compressibility (Eq. 38).

5. Only disk features with widthsW ≲ 1/ky can trig-

ger the RWI (Figs. 3, 6). In global models with

a feature at radius Rc, this limit, W/Rc ≲ 1/m,

is relevant (i.e. smaller than the disk) for m > 1

(Fig. 9 and §5.3.1). This limit is roughly derived

in §3.1.1.

6. The RWI boundary often lies “halfway to

Rayleigh instability” in that min(κ2) drops to

∼ 0.5−0.6Ω2. This behavior occurs for widths

H ≲ W ≲ 1/ky = Rc/m (Fig. 7), a range that

expands for thinner disks (and thus stronger com-

pressibility, Fig. 6). This boundary is roughly de-

rived in §4.1.2.

7. For narrow features, withW ≲ H the RWI bound-

ary follows ∆Π ∝ W 3 (Eq. 38). This scaling

agrees with the low amplitude behavior in Ono

et al. (2016), see Eq. 45. We explain the relevant

factors that turn this previously known propor-

tionality into an equality.

8. The stability boundary for the RWI of localized

disk feature (with W ≲ 0.2Rc) can be approxi-

mated by equation (38). The enthalpy amplitude

and width must be calculated (see §5.1). For wider
disk features, the “halfway to Rayleigh” criterion

is a good approximation for m = 1 modes (Figs.

9, 10).

9. Shape effects are generally minor when comparing

the same enthalpy amplitude and width. However

bumps are the most susceptible to RWI. Wide gaps
show the largest global corrections, compared to

shearing sheet models. The inner edges of wide

gaps are the least susceptible to RWI (Fig. 7, 10).

This final point implies that wide, symmetric plane-

tary gaps the outer gap edge should generally support

more vigorous RWI and vortex formation. Vortices at

the outer edges of gaps could be more prominent in simu-

lations and observations for other reasons as well, includ-

ing: larger area, longer orbital and viscous timescales,

numerical resolution and more dust trapping (Fu et al.

2014; Lobo Gomes et al. 2015; Regály et al. 2017; Ham-

mer et al. 2017). Alternately, our results imply that over

longer times, the RWI should make wide planetary gaps

more asymmetric, with closer and steeper inner edges.

The radial powerlaw of the background disk also affects

gap asymmetries (Cimerman & Rafikov 2023).
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Our simplified models neglect many physical effects,

notably baroclinicity, cooling, 3D motions and self-

gravity. Previous works have studied the RWI with these

effects and shown their importance (§1). Studying these

effects with methods similar to this work—e.g. param-

eter studies of models of increasing complexity—could

yield further insights.
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